3.1.99 \(\int \frac {1}{x \sqrt {a+b x+c x^2} (d-f x^2)} \, dx\) [99]

Optimal. Leaf size=267 \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d}-\frac {\sqrt {f} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {\sqrt {f} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}} \]

[Out]

-arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/d/a^(1/2)-1/2*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^
(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2))*f^(1/2)/d/(c*d+a*f-b*d^(1/2)*f^(1/2))
^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2
)*f^(1/2))^(1/2))*f^(1/2)/d/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.42, antiderivative size = 267, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6857, 738, 212, 1047} \begin {gather*} -\frac {\sqrt {f} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 d \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}+\frac {\sqrt {f} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 d \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

-(ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])]/(Sqrt[a]*d)) - (Sqrt[f]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt
[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d*Sqrt[c
*d - b*Sqrt[d]*Sqrt[f] + a*f]) + (Sqrt[f]*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*S
qrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx &=\int \left (\frac {1}{d x \sqrt {a+b x+c x^2}}-\frac {f x}{d \sqrt {a+b x+c x^2} \left (-d+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{d}-\frac {f \int \frac {x}{\sqrt {a+b x+c x^2} \left (-d+f x^2\right )} \, dx}{d}\\ &=-\frac {2 \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{d}-\frac {f \int \frac {1}{\left (-\sqrt {d} \sqrt {f}+f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d}-\frac {f \int \frac {1}{\left (\sqrt {d} \sqrt {f}+f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d}\\ &=-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d}+\frac {f \text {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}+2 a f-\left (2 c \sqrt {d} \sqrt {f}-b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d}+\frac {f \text {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}+2 a f-\left (-2 c \sqrt {d} \sqrt {f}-b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d}\\ &=-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d}-\frac {\sqrt {f} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {\sqrt {f} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.27, size = 193, normalized size = 0.72 \begin {gather*} \frac {\frac {4 \tanh ^{-1}\left (\frac {\sqrt {c} x-\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )}{\sqrt {a}}-f \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {a \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-\log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-b \sqrt {c} d+2 c d \text {$\#$1}+a f \text {$\#$1}-f \text {$\#$1}^3}\&\right ]}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

((4*ArcTanh[(Sqrt[c]*x - Sqrt[a + x*(b + c*x)])/Sqrt[a]])/Sqrt[a] - f*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1
 + 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^4 & , (a*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - Log[-(Sqrt[c]*x) +
 Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(-(b*Sqrt[c]*d) + 2*c*d*#1 + a*f*#1 - f*#1^3) & ])/(2*d)

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 391, normalized size = 1.46

method result size
default \(\frac {\ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{2 d \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {\ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{d \sqrt {a}}+\frac {\ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{2 d \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}\) \(391\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/2/d/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f
)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(
1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f))-1/d/a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a
)^(1/2))/x)+1/2/d/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x
-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1
/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

-integrate(1/(sqrt(c*x^2 + b*x + a)*(f*x^2 - d)*x), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2993 vs. \(2 (203) = 406\).
time = 39.31, size = 5995, normalized size = 22.45 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

[1/4*(a*d*sqrt((c*d*f + a*f^2 + (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*
f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/(
c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f))*log((2*b*c*f^2*x + b^2*f^2 + 2*(b^2*d*f^2 - (c^3*d^5 + a^3*d^2*f
^3 - (b^2*c - 3*a*c^2)*d^4*f - (a*b^2 - 3*a^2*c)*d^3*f^2)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2
*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))*sqrt(c*x^2 + b*x + a)
*sqrt((c*d*f + a*f^2 + (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(
b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/(c^2*d^4 +
 a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)) - (2*a*c^2*d^3*f + 2*a^3*d*f^3 - 2*(a*b^2 - 2*a^2*c)*d^2*f^2 + (b*c^2*d^3
*f + a^2*b*d*f^3 - (b^3 - 2*a*b*c)*d^2*f^2)*x)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6
*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/x) - a*d*sqrt((c*d*f + a*f^2 + (
c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f
 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/(c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*
a*c)*d^3*f))*log((2*b*c*f^2*x + b^2*f^2 - 2*(b^2*d*f^2 - (c^3*d^5 + a^3*d^2*f^3 - (b^2*c - 3*a*c^2)*d^4*f - (a
*b^2 - 3*a^2*c)*d^3*f^2)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c
+ 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))*sqrt(c*x^2 + b*x + a)*sqrt((c*d*f + a*f^2 + (c^2*d^4 +
 a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 -
 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/(c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*
f)) - (2*a*c^2*d^3*f + 2*a^3*d*f^3 - 2*(a*b^2 - 2*a^2*c)*d^2*f^2 + (b*c^2*d^3*f + a^2*b*d*f^3 - (b^3 - 2*a*b*c
)*d^2*f^2)*x)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2
)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/x) + a*d*sqrt((c*d*f + a*f^2 - (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*
a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*
d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/(c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f))*log((2*b*c*f^2*x + b
^2*f^2 + 2*(b^2*d*f^2 + (c^3*d^5 + a^3*d^2*f^3 - (b^2*c - 3*a*c^2)*d^4*f - (a*b^2 - 3*a^2*c)*d^3*f^2)*sqrt(b^2
*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2
 - 2*a^3*c)*d^4*f^3)))*sqrt(c*x^2 + b*x + a)*sqrt((c*d*f + a*f^2 - (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*
f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 -
 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/(c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)) + (2*a*c^2*d^3*f + 2*a^3*d*f^
3 - 2*(a*b^2 - 2*a^2*c)*d^2*f^2 + (b*c^2*d^3*f + a^2*b*d*f^3 - (b^3 - 2*a*b*c)*d^2*f^2)*x)*sqrt(b^2*f^3/(c^4*d
^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)
*d^4*f^3)))/x) - a*d*sqrt((c*d*f + a*f^2 - (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7
 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d
^4*f^3)))/(c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f))*log((2*b*c*f^2*x + b^2*f^2 - 2*(b^2*d*f^2 + (c^3*d^5
+ a^3*d^2*f^3 - (b^2*c - 3*a*c^2)*d^4*f - (a*b^2 - 3*a^2*c)*d^3*f^2)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(
b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))*sqrt(c*x^2
 + b*x + a)*sqrt((c*d*f + a*f^2 - (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^
3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))
/(c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)) + (2*a*c^2*d^3*f + 2*a^3*d*f^3 - 2*(a*b^2 - 2*a^2*c)*d^2*f^2 +
 (b*c^2*d^3*f + a^2*b*d*f^3 - (b^3 - 2*a*b*c)*d^2*f^2)*x)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2
*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/x) + 2*sqrt(a)*log(-(
8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2))/(a*d), 1/4*(a*d*sqrt(
(c*d*f + a*f^2 + (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*d^3*f)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^
2 - 2*a*c^3)*d^6*f + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))/(c^2*d^4 + a^2*d
^2*f^2 - (b^2 - 2*a*c)*d^3*f))*log((2*b*c*f^2*x + b^2*f^2 + 2*(b^2*d*f^2 - (c^3*d^5 + a^3*d^2*f^3 - (b^2*c - 3
*a*c^2)*d^4*f - (a*b^2 - 3*a^2*c)*d^3*f^2)*sqrt(b^2*f^3/(c^4*d^7 + a^4*d^3*f^4 - 2*(b^2*c^2 - 2*a*c^3)*d^6*f +
 (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^5*f^2 - 2*(a^2*b^2 - 2*a^3*c)*d^4*f^3)))*sqrt(c*x^2 + b*x + a)*sqrt((c*d*f +
a*f^2 + (c^2*d^4 + a^2*d^2*f^2 - (b^2 - 2*a*c)*...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{- d x \sqrt {a + b x + c x^{2}} + f x^{3} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(1/(-d*x*sqrt(a + b*x + c*x**2) + f*x**3*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

sage2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x\,\left (d-f\,x^2\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(d - f*x^2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/(x*(d - f*x^2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________